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Algorithms	for	NLP



Speech	Signals



n Frequency	gives	pitch;	amplitude	gives	volume

n Frequencies	at	each	time	slice	processed	into	observation	vectors
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Speech	in	a	Slide
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Articulation



Text	from	Ohala,	Sept	2001,	from	Sharon	Rose	slide

Sagittal section	of	the	vocal	tract	(Techmer 1880)

Nasal	cavity

Pharynx

Vocal	folds	(in	the	larynx)

Trachea

Lungs

Articulatory	System

Oral	cavity



Space	of	Phonemes

§ Standard	international	phonetic	alphabet	(IPA)	chart	of	consonants



Place



Places	of	Articulation

labial

dental
alveolar post-alveolar/palatal

velar
uvular

pharyngeal

laryngeal/glottal

Figure	thanks	to	Jennifer	Venditti



Labial	place

bilabial

labiodental

Figure	thanks	to	Jennifer	Venditti

Bilabial:
p,	b,	m

Labiodental:
f,	v



Coronal	place

dental
alveolar post-alveolar/palatal

Figure	thanks	to	Jennifer	Venditti

Dental:
th/dh

Alveolar:
t/d/s/z/l/n

Post:
sh/zh/y



Dorsal	Place

velar
uvular

pharyngeal

Figure	thanks	to	Jennifer	Venditti

Velar:
k/g/ng



Space	of	Phonemes

§ Standard	international	phonetic	alphabet	(IPA)	chart	of	consonants



Manner



Manner	of	Articulation
§ In	addition	to	varying	by	place,	sounds	vary	by	

manner

§ Stop:	complete	closure	of	articulators,	no	air	
escapes	via	mouth
§ Oral	stop:	palate	is	raised	(p,	t,	k,	b,	d,	g)
§ Nasal	stop:	oral	closure,	but	palate	is	lowered	(m,	

n,	ng)

§ Fricatives:	substantial	closure,	turbulent:	(f,	v,	s,	z)

§ Approximants:	slight	closure,	sonorant:	(l,	r,	w)

§ Vowels:	no	closure,	sonorant:	(i,	e,	a)



Space	of	Phonemes

§ Standard	international	phonetic	alphabet	(IPA)	chart	of	consonants



Vowels



Vowel	Space



Acoustics



“She	just	had	a	baby”

§ What	can	we	learn	from	a	wavefile?
§ No	gaps	between	words	(!)
§ Vowels	are	voiced,	long,	loud
§ Length	in	time	=	length	in	space	in	waveform	picture
§ Voicing:	regular	peaks	in	amplitude
§ When	stops	closed:	no	peaks,	silence
§ Peaks	=	voicing:	.46	to	.58	(vowel	[iy],	from	second	.65	to	.74	(vowel	[ax])	
and	so	on

§ Silence	of	stop	closure	(1.06	to	1.08	for	first	[b],	or	1.26	to	1.28	for	second	
[b])

§ Fricatives	like	[sh]:	intense	irregular	pattern;	see	.33	to	.46



Time-Domain	Information

bad

pad

spat

pat

Example	from	Ladefoged



Simple	Periodic	Waves	of	Sound

Time (s)
0 0.02

œ0.99

0.99

0

• Y axis: Amplitude = amount of air pressure at that point in time
• Zero is normal air pressure, negative is rarefaction

• X axis: Time.
• Frequency = number of cycles per second.
• 20 cycles in .02 seconds = 1000 cycles/second = 1000 Hz



Complex	Waves:	100Hz+1000Hz

Time (s)
0 0.05

œ0.9654

0.99

0
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Spectrum

100 1000Frequency in Hz
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Frequency components (100 and 1000 Hz) on x-axis



Part	of	[ae]	waveform	from	“had”

§ Note	complex	wave	repeating	nine	times	in	figure
§ Plus	smaller	waves	which	repeats	4	times	for	every	large	

pattern
§ Large	wave	has	frequency	of	250	Hz	(9	times	in	.036	seconds)
§ Small	wave	roughly	4	times	this,	or	roughly	1000	Hz
§ Two	little	tiny	waves	on	top	of	peak	of	1000	Hz	waves
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Spectrum	of	an	Actual	Speech
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Spectrograms
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Spectrograms
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Spectrograms
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Types	of	Graphs
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Back	to	Spectra
§ Spectrum	represents	these	freq	components
§ Computed	by	Fourier	transform,	algorithm	which	separates	

out	each	frequency	component	of	wave.	

§ x-axis	shows	frequency,	y-axis	shows	magnitude	(in	decibels,	
a	log	measure	of	amplitude)

§ Peaks	at	930	Hz,	1860	Hz,	and	3020	Hz.



Source	/	Filter



Why	these	Peaks?	

§ Articulation	process:
§ The	vocal	cord	vibrations	

create	harmonics
§ The	mouth	is	an	amplifier
§ Depending	on	shape	of	

mouth,	some	harmonics	are	
amplified	more	than	others



Figures from Ratree Wayland

A3

A4

A2

C4 (middle C)

C3

F#3

F#2

Vowel	[i]	at	increasing	pitches



Resonances	of	the	Vocal	Tract

§ The	human	vocal	tract	as	an	open	tube:

§ Air	in	a	tube	of	a	given	length	will	tend	
to	vibrate	at	resonance	frequency	of	
tube.	

§ Constraint:	Pressure	differential	should	
be	maximal	at	(closed)	glottal	end	and	
minimal	at	(open)	lip	end.

Closed	end Open	end

Length	17.5	cm.

Figure from W. Barry



From	Sundberg



Computing	the	3	Formants	of	Schwa

§ Let	the	length	of	the	tube	be	L
§ F1 =	c/l1 =	c/(4L)	=	35,000/4*17.5	=	500Hz
§ F2 =	c/l2 =	c/(4/3L)	=	3c/4L	=	3*35,000/4*17.5	=	1500Hz
§ F3 =	c/l3 =	c/(4/5L)	=	5c/4L	=	5*35,000/4*17.5	=	2500Hz

§ So	we	expect	a	neutral	vowel	to	have	3	resonances	at	500,	
1500,	and	2500	Hz

§ These	vowel	resonances	are	called	formants



From
Mark
Liberman



Seeing	Formants:	the	Spectrogram



Vowel	Space



Seeing	Formants:	the	Spectrogram



American	English	Vowel	Space

FRONT BACK

HIGH

LOW

iy

ih

eh

ae aa

ao

uw

uh

ah
ax

ix ux

Figures from Jennifer Venditti, H. T. Bunnell



Spectrograms



How	to	Read	Spectrograms

§ [bab]:	closure	of	lips	lowers	all	formants:	so	rapid		increase	in	
all	formants	at	beginning	of	"bab”

§ [dad]:	first	formant	increases,	but	F2	and	F3	slight	fall
§ [gag]:	F2	and	F3	come	together:	this	is	a	characteristic		of	

velars.	Formant	transitions	take	longer	in	velars	than	in	
alveolars or	labials

From Ladefoged “A Course in Phonetics”



“She	came	back	and	started	again”

1.		lots	of	high-freq	energy
3.		closure	for	k
4.		burst	of	aspiration	for	k
5.		ey vowel;	faint	1100	Hz	formant	is	nasalization
6.		bilabial	nasal
7.		short	b	closure,	voicing	barely	visible.	
8.		ae;	note	upward	transitions	after	bilabial	stop	at	beginning
9.		note	F2	and	F3	coming	together	for	"k"

From	Ladefoged “A	Course	in	Phonetics”



Dialect	Issues

§ Speech	varies	from	dialect	to	
dialect	(examples	are	American	
vs.	British	English)
§ Syntactic	(“I	could”	vs.	“I	could	

do”)
§ Lexical	(“elevator”	vs.	“lift”)
§ Phonological
§ Phonetic

§ Mismatch	between	training	and	
testing	dialects	can	cause	a	large	
increase	in	error	rate

American British

al
l

ol
d



Speech	Recognition



The	Noisy	Channel	Model

Acoustic model: HMMs over 
word positions with mixtures 
of Gaussians as emissions

Language model: 
Distributions over sequences 

of words (sentences)



Speech	Model

w1 w2
Words

s1 s2 s3 s4 s5 s6 s7
Sound	types

a1 a2 a3 a4 a5 a6 a7
Acoustic
observations

Language
model

Acoustic
model



Acoustic	Model

s1 s2 s3 s4 s5 s6 s7
Sound	types

a1 a2 a3 a4 a5 a6 a7
Acoustic
observations

Acoustic
model



Frame Extraction

§ A frame (25 ms wide) extracted every 10 ms

25 ms

10ms

a1      a2      a3

Figure:	Simon	Arnfield

Preview	of	feature	
extraction	for	each	frame:
1) DFT	(Spectrum)
2) Log	(Calibrate?)
3) another	DFT	(!!??)



Feature	Extraction



Digitizing	Speech

Figure:	Bryan	Pellom



Source	/	Filter	

§ Articulation	process:
§ The	vocal	cord	vibrations	

create	harmonics
§ The	mouth	is	an	amplifier
§ Depending	on	shape	of	

mouth,	some	harmonics	are	
amplified	more	than	others



Figures from Ratree Wayland

Problem	with	Raw	Spectrum



Deconvolution /	Liftering



Deconvolution /	Liftering
s

e f
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Deconvolution /	Liftering
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Deconvolution /	Liftering

Graphs	from	Dan	Ellis

s = e � f

log(s) = log(e) + log(f)

IDFT(log(s))



Mel	Freq.	Cepstral Coefficients

§ Do	FFT	to	get	spectral	information
§ Like	the	spectrogram	we	saw	earlier

§ Apply	Mel	scaling	(New)
§ Models	human	ear;	more	sensitivity	

in	lower	freqs
§ Approx linear	below	1kHz,	log	above,	

equal	samples	above	and	below	1kHz

§ Take	Log
§ Do	discrete	cosine	transform

[Graph:	Wikipedia]



Final	Feature	Vector

§ 39	(real)	features	per	10	ms	frame:
§ 12	MFCC	features
§ 12	delta	MFCC	features
§ 12	delta-delta	MFCC	features
§ 1	(log)	frame	energy
§ 1	delta	(log)	frame	energy
§ 1	delta-delta	(log	frame	energy)

§ So	each	frame	is	represented	by	a	39D	vector



Emission	Model



HMMs	for	Continuous	Observations

§ Before:	discrete	set	of	observations

§ Now:	feature	vectors	are	real-valued

§ Solution	1:	discretization
§ Solution	2:	continuous	emissions

§ Gaussians
§ Multivariate	Gaussians
§ Mixtures	of	multivariate	Gaussians

§ A	state	is	progressively
§ Context	independent	subphone (~3	per	

phone)
§ Context	dependent	phone	(triphones)
§ State	tying	of	CD	phone



Vector	Quantization

§ Idea:	discretization
§ Map	MFCC	vectors	onto	

discrete	symbols	
§ Compute	probabilities	

just	by	counting

§ This	is	called	vector	
quantization	or	VQ

§ Not	used	for	ASR	any	
more

§ But:	useful	to	consider	as	
a	starting	point



Gaussian	Emissions
§ VQ	is	insufficient	for	top-

quality	ASR
§ Hard	to	cover	high-

dimensional	space	with	
codebook

§ Moves	ambiguity	from	the	
model	to	the	preprocessing

§ Instead:	assume	the	
possible	values	of	the	
observation	vectors	are	
normally	distributed.
§ Represent	the	observation	

likelihood	function	as	a	
Gaussian?

From bartus.org/akustyk



Gaussians	for	Acoustic	Modeling

§ P(x):

P(x)

x

P(x) is highest here at mean

P(x) is low here, far from mean

A Gaussian is parameterized by a mean and a variance:



Multivariate	Gaussians
§ Instead	of	a	single	mean	µ and	variance	s2:

§ Vector	of	means	µ and	covariance	matrix	S

§ Usually	assume	diagonal	covariance	(!)
§ This	isn’t	very	true	for	FFT	features,	but	is	less	bad	for	MFCC	features



Gaussians:	Size	of	S

§ µ =	[0	0]											 µ =	[0	0]										 µ =	[0	0]	
§ S =	I	 S =	0.6I S =	2I
§ As	S becomes	larger,	Gaussian	becomes	more	spread	
out;	as	S becomes	smaller,	Gaussian	more	
compressed

Text	and	figures	from	Andrew	Ng



Gaussians:	Shape	of	S

§ As	we	increase	the	off	diagonal	entries,	more	correlation	between	
value	of	x	and	value	of	y

Text	and	figures	from	Andrew	Ng



But	we’re	not	there	yet

§ Single	Gaussians	may	do	a	
bad	job	of	modeling	a	
complex	distribution	in	any	
dimension

§ Even	worse	for	diagonal	
covariances

§ Solution:	mixtures	of	
Gaussians

From openlearn.open.ac.uk



Mixtures	of	Gaussians
§ Mixtures	of	Gaussians:

From	robots.ox.ac.uk http://www.itee.uq.edu.au/~comp4702



GMMs
§ Summary:	each	state	has	an	emission	

distribution	P(x|s)	(likelihood	function)	
parameterized	by:
§ M	mixture	weights
§ M	mean	vectors	of	dimensionality	D
§ Either	M covariance	matrices	of	DxD or	M	

Dx1	diagonal	variance	vectors

§ Like	soft	vector	quantization	after	all
§ Think	of	the	mixture	means	as	being	

learned	codebook	entries
§ Think	of	the	Gaussian	densities	as	a	

learned	codebook	distance	function
§ Think	of	the	mixture	of	Gaussians	like	a	

multinomial	over	codes
§ (Even	more	true	given	shared	Gaussian	

inventories,	cf next	week)



State	Model



State	Transition	Diagrams
§ Bayes	Net:	HMM	as	a	Graphical	Model

§ State	Transition	Diagram:	Markov	Model	as	a	Weighted	FSA

w w w

x x x

the cat chased

dog
has



ASR	Lexicon

Figure:	J	&	M



Lexical	State	Structure

Figure:	J	&	M



Adding	an	LM

Figure	from	Huang	et	al	page	618



State	Space
§ State	space	must	include

§ Current	word	(|V|	on	order	of	20K+)
§ Index	within	current	word	(|L|	on	order	of	5)
§ E.g.	(lec[t]ure)	(though	not	in	orthography!)

§ Acoustic	probabilities	only	depend	on	phone	type
§ E.g.	P(x|lec[t]ure)	=	P(x|t)

§ From	a	state	sequence,	can	read	a	word	sequence



State	Refinement



Phones	Aren’t	Homogeneous



Need	to	Use	Subphones

Figure:	J	&	M



A	Word	with	Subphones

Figure:	J	&	M



Modeling	phonetic	context

w	iy										r	iy													m	iy												n	iy



“Need”	with	triphone	models

Figure:	J	&	M



Lots	of	Triphones

§ Possible	triphones:	50x50x50=125,000

§ How	many	triphone	types	actually	occur?

§ 20K	word	WSJ	Task	(from	Bryan	Pellom)
§ Word	internal	models:		need	14,300	triphones
§ Cross	word	models:	need	54,400	triphones

§ Need	to	generalize	models,	tie	triphones



State	Tying	/	Clustering

§ [Young,	Odell,	Woodland	
1994]

§ How	do	we	decide	which	
triphones	to	cluster	
together?

§ Use	phonetic	features (or	
‘broad	phonetic	classes’)
§ Stop
§ Nasal
§ Fricative
§ Sibilant
§ Vowel
§ lateral

Figure:	J	&	M



State	Space
§ State	space	now	includes

§ Current	word:	|W|	is	order	20K
§ Index	in	current	word:	|L|	is	order	5
§ Subphone position:	3
§ E.g.	(lec[t-mid]ure)

§ Acoustic	model	depends	on	clustered	phone	context
§ But	this	doesn’t	grow	the	state	space

§ But,	adding	the	LM	context	for	trigram+	does
§ (after	the,	lec[t-mid]ure)
§ This	is	a	real	problem	for	decoding



Decoding



Inference	Tasks

Most	likely	word	sequence:
d							- ae												- d

Most	likely	state	sequence:		
d1-d6-d6-d4-ae5-ae2-ae3-ae0-d2-d2-d3-d7-d5



Viterbi	Decoding

Figure:	Enrique	Benimeli



Viterbi	Decoding

Figure:	Enrique	Benimeli



Emission	Caching
§ Problem:	scoring	all	the	P(x|s)	values	is	too	slow
§ Idea:	many	states	share	tied	emission	models,	so	cache	them



Prefix	Trie Encodings
§ Problem:	many	partial-word	states	are	indistinguishable
§ Solution:	encode	word	production	as	a	prefix	trie (with	

pushed	weights)

§ A	specific	instance	of	minimizing	weighted	FSAs	[Mohri,	94]
Figure:	Aubert,	02
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Beam	Search
§ Problem:	trellis	is	too	big	to	compute	v(s)	vectors
§ Idea:	most	states	are	terrible,	keep	v(s)	only	for	top	states	at	

each	time

§ Important:	still	dynamic	programming;	collapse	equiv states

the	b.

the	m.

and	then.

at	then.

the	ba.
the	be.
the	bi.

the	ma.
the	me.
the	mi.

then	a.
then	e.
then	i.

the	ba.

the	be.

the	ma.

then	a.



LM	Factoring
§ Problem:	Higher-order	n-grams	explode	the	state	space
§ (One)	Solution:

§ Factor	state	space	into	(word	index,	lm	history)
§ Score	unigram	prefix	costs	while	inside	a	word
§ Subtract	unigram	cost	and	add	trigram	cost	once	word	is	complete

d

n
i

t

o t

0.04

0.25

0.5

1
1

1

the



LM	Reweighting
§ Noisy	channel	suggests

§ In	practice,	want	to	boost	LM

§ Also,	good	to	have	a	“word	bonus”	to	offset	LM	costs

§ These	are	both	consequences	of	broken	independence	
assumptions	in	the	model





Training



Training	Mixture	Models
§ Input:	wav	files	with	unaligned	transcriptions

§ Forced	alignment
§ Computing	the	“Viterbi	path”	over	the	training	data	(where	the	

transcription	is	known)	is	called	“forced	alignment”
§ We	know	which	word	string	to	assign	to	each	observation	sequence.
§ We	just	don’t	know	the	state	sequence.
§ So	we	constrain	the	path	to	go	through	the	correct	words	(by	using	a	

special	example-specific	language	model)
§ And	otherwise	run	the	Viterbi	algorithm

§ Result:	aligned	state	sequence



State	Tying

§ Creating	CD	phones:
§ Start	with	monophone,	do	EM	

training
§ Clone	Gaussians	into	triphones
§ Build	decision	tree	and	cluster	

Gaussians
§ Clone	and	train	mixtures	

(GMMs)

§ General	idea:
§ Introduce	complexity	gradually
§ Interleave	constraint	with	

flexibility



Standard	subphone/mixture	HMM

Temporal 
Structure

Gaussian
Mixtures

Model Error rate
HMM Baseline 25.1%



An	Induced	Model

Standard Model

Single 
Gaussians

Fully 
Connected

[Petrov, Pauls, and Klein, 07]



Hierarchical	Split	Training	with	EM

32.1%

28.7%

25.6%

HMM Baseline 25.1%
5 Split rounds 21.4%

23.9%



Refinement	of	the	/ih/-phone



Refinement	of	the	/ih/-phone



Refinement	of	the	/ih/-phone
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