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Speech Signals



Speech in a Slide

m  Frequency gives pitch; amplitude gives volume
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Articulation



Articulatory System

Nasal cavity

Oral cavity

Pharynx

Vocal folds (in the larynx)

Trachea

Lungs

Sagittal section of the vocal tract (Techmer 1880)
Text from Ohala, Sept 2001, from Sharon Rose slide



Space of Phonemes

TABIAL CORONAL DORSAL RADICAL LARYNGEAL
Bilabial | -7 | Dental [alveolar| "0 [Retroflex Palatal | Velar | Uvular |Pharyngeal ;{’;tal Glottal
Nasal m, m n n|, n )4 N
Plosive pb|opd td td|lcilkglqgo
Fricative B |fv|00|sz|fz3|sz|¢ci|xy X
Approximant b} A 1 J W
Trill B r
Tap, Flap r r
e t kg t X
L‘;Egl(imant l l, 1<
Lateral flap J ]

= Standard international phonetic alphabet (IPA) chart of consonants




Place



Places of Articulation

dent

labial

alveolar

post-alyveolar/palatal

<

ﬁ“ velar
uvular
pharyngeal

laryngeal/glottal

Figure thanks to Jennifer Venditti



p 3 Labial place

, Bilabial:
labi tal
p, b, m
Labiodental:
bilabial fv

Figure thanks to Jennifer Venditti



Coronal place

post-alyveolar/palatal

Dental:
th/dh
Alveolar:

t/d/s/z/l/n
Post:

sh/zh/y

Figure thanks to Jennifer Venditti



p 3 Dorsal Place

velar

Velar: uvular
k/g/ng pharyngeal

Figure thanks to Jennifer Venditti



Space of Phonemes

TABIAL CORONAL DORSAL RADICAL LARYNGEAL
Bilabial | -7 | Dental [alveolar| "0 [Retroflex Palatal | Velar | Uvular |Pharyngeal ;{’;tal Glottal
Nasal m, m n n|, n )4 N
Plosive pb|opd td td|lcilkglqgo
Fricative B |fv|00|sz|fz3|sz|¢ci|xy X
Approximant b} A 1 J W
Trill B r
Tap, Flap r r
e t kg t X
L‘;Egl(imant l l, 1<
Lateral flap J ]

= Standard international phonetic alphabet (IPA) chart of consonants




Manner



E& Manner of Articulation

" |n addition to varying by place, sounds vary by
manner

= Stop: complete closure of articulators, no air
escapes via mouth

= QOral stop: palate is raised (p, t, k, b, d, g)
= Nasal stop: oral closure, but palate is lowered (m,
n, ng)

= Fricatives: substantial closure, turbulent: (f, v, s, z)
=  Approximants: slight closure, sonorant: (I, r, w)

= Vowels: no closure, sonorant: (i, e, a)



Space of Phonemes

TABIAL CORONAL DORSAL RADICAL LARYNGEAL
Bilabial | -7 | Dental [alveolar| "0 [Retroflex Palatal | Velar | Uvular |Pharyngeal ;{’;tal Glottal
Nasal m, m n n|, n )4 N
Plosive pb|opd td td|lcilkglqgo
Fricative B |fv|00|sz|fz3|sz|¢ci|xy X
Approximant b} A 1 J W
Trill B r
Tap, Flap r r
e t kg t X
L‘;Egl(imant l l, 1<
Lateral flap J ]

= Standard international phonetic alphabet (IPA) chart of consonants




Vowels



Vowel Space

Front Nearfront Central Nearback Back

Close 1 isg—wtu
Near close IeYy *0

Close mid € X\ @ 9\ e ¥to
Mid o

Open mid €N\ 0e—3 \G—A t o
Near open |

Open a CEA_O é p

Vowels at right & left of bullets are rounded & unrounded.
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Acoustics



E& “She just had a baby”

= \What can we learn from a wavefile?

= No gaps between words (!)

= Vowels are voiced, long, loud

= Length in time = length in space in waveform picture
= Voicing: regular peaks in amplitude

= When stops closed: no peaks, silence

= Peaks = voicing: .46 to .58 (vowel [iy], from second .65 to .74 (vowel [ax])
and so on

= Silence of stop closure (1.06 to 1.08 for first [b], or 1.26 to 1.28 for second
[b])

= Fricatives like [sh]: intense irregular pattern; see .33 to .46



}f@ Time-Domain Information

pat

pad

bad

spat

S

el P

=

Example from Ladefoged



Efi Simple Periodic Waves of Sound

0.99

Y

0 0.02
Time (s)

Y axis: Amplitude = amount of air pressure at that point in time
« Zero is normal air pressure, negative is rarefaction

« X axis: Time.

* Frequency = number of cycles per second.

» 20 cycles in .02 seconds = 1000 cycles/second = 1000 Hz



}f@ Complex Waves: 100Hz+1000Hz

0.99

o

Amplitude

09.9654- '
0 0.05

Time (s)



}f; Spectrum

Frequency components (100 and 1000 Hz) on x-axis

Coefficient

100 Frequency in Hz 1000



Z\gart of [ae] waveform from “had”
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Time
= Note complex wave repeating nine times in figure

= Plus smaller waves which repeats 4 times for every large
pattern

= Large wave has frequency of 250 Hz (9 times in .036 seconds)
= Small wave roughly 4 times this, or roughly 1000 Hz
= Two little tiny waves on top of peak of 1000 Hz waves
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Efﬁ, Spectrum of an Actual Speech
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Spectrograms
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Spectrograms
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Spectrograms
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Types of Graphs
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p 3 Back to Spectra

= Spectrum represents these freq components

= Computed by Fourier transform, algorithm which separates
out each frequency component of wave.

IIIII

= x-axis shows frequency, y-axis shows magnitude (in decibels,
a log measure of amplitude)

= Peaks at 930 Hz, 1860 Hz, and 3020 Hz.



Source / Filter



Why these Peaks?

= Articulation process:

The vocal cord vibrations
create harmonics

The mouth is an amplifier

Depending on shape of
mouth, some harmonics are
amplified more than others
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Efi Vowel [i] at increasing pitches
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Figures from Ratree Wayland



E& Resonances of the Vocal Tract

The human vocal tract as an open tube:

Closed end

_
l

Open end

ACOUSUC ty

v

Length 17.5 cm.

Air in a tube of a given length will tend

to vibrate at resonance frequency of
tube.

Constraint: Pressure differential should

: | — VOOCA|
be maximal at (closed) glottal end and folds
minimal at (open) lip end.

(a)

a\\o’
%5971 wbus oY

Figure from W. Barry



From Sundberg



g Computing the 3 Formants of Schwa

= Let the length of the tube be L
= F,=c/A;=c/(4L)=35,000/4*17.5 = 500Hz
* F,=c¢/A,=c/(4/3L) =3c/4L = 3*35,000/4*17.5 = 1500Hz
= F,=c/A;=c/(4/5L) = 5¢/4L = 5*35,000/4*17.5 = 2500Hz

= So we expect a neutral vowel to have 3 resonances at 500,
1500, and 2500 Hz

= These vowel resonances are called formants



Cross section of vocal tract Model of vocal tract Acoustic spectrum
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g Seeing Formants: the Spectrogram
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Vowel Space

Front Near front Central

Near back Back

Close 1 y——iqg—uwitu
Near close Iey *0
Closemid €Y \@— 9\ \0—Y ‘+ )
Mid o

Open mid e—3 \G—A ‘+ 0
Near open |

Open a CEA_(I ‘ )

Vowels at right & left of bullets are rounded & unrounded.
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g Seeing Formants: the Spectrogram
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Ef@ American English Vowel Space

HIGH E 500}
g 2000fF | )
Iy & 15002- @
. N 508(;0‘ 200600 800 1000
IX ux l F1 Frequency (Hz)
| . |
=
ax ©
FRONT BACK
eh ao
PN/
dé aa
LOW

Figures from Jennifer Venditti, H. T. Bunnell



Spectrograms



E& How to Read Spectrograms

4000

3000

2000

1000

Hz L

= [bab]: closure of lips lowers all formants: so rapid increase in
all formants at beginning of "bab"

= [dad]: first formant increases, but F2 and F3 slight fall

= [gag]: F2 and F3 come together: this is a characteristic of
velars. Formant transitions take longer in velars than in
alveolars or labials

From Ladefoged “A Course in Phonetics”



E&”She came back and started again”
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lots of high-freq energy

closure for k

burst of aspiration for k

ey vowel; faint 1100 Hz formant is nasalization

bilabial nasal

short b closure, voicing barely visible.

ae; note upward transitions after bilabial stop at beginning
note F2 and F3 coming together for "k"

From Ladefoged “A Course in Phonetics”



p 3 Dialect Issues

= Speech varies from dialect to
dialect (examples are American
vs. British English)

= Syntactic (“l could” vs. “l could
do”)

= Lexical (“elevator” vs. “lift”)

= Phonological

= Phonetic

= Mismatch between training and
testing dialects can cause a large
increase in error rate

old

American British




Speech Recognition



% The Noisy Channel Model

Language Model Acoustic Model
source channel
P(w) W | Plalw) - @
&/\ ;- -
best observed
<« decoder
W d

w* = arg max P(w|a)
w
o arg max P(a|w)P(w)
w
/ \

Acoustic model: HMMs over Language model:
word positions with mixtures Distributions over sequences
of Gaussians as emissions of words (sentences)



Speech Model

Sound types

Acoustic
observations

Language
model

Acoustic
model
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Acoustic Model

Soy

llllll II'IIIIIII lllllllll

B ONOIOIOXOIONO
Acoustic

Acoustic model
observations

‘\

. k\ ;

~ \ I,
b ' RN

5000 -




Eﬁ Frame Extraction

= Aframe (25 ms wide) extracted every 10 ms

‘ 25 ms ‘
| | Preview of feature
| | extraction for each frame:
1) DFT (Spectrum)
1o, 2) Log (Calibrate?)
a, a, a, 3) another DFT (!1?7?)

Figure: Simon Arnfield



Feature Extraction



Digitizing Speech

s(2) O
®

s(1) R S(n)

Continuous Microphone

Sound Discrete
pressure Digital

wave Samples

Figure: Bryan Pellom



Source / Filter

= Articulation process:

The vocal cord vibrations
create harmonics

The mouth is an amplifier

Depending on shape of
mouth, some harmonics are
amplified more than others

Output sound - == ======-- =

ecibels)

Output amplitude (d

Filter: ~= ===~z -
(Vocal tract)

cibe

(de

Filter ratio

Source =imimim i i o oo =
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Vibrating vocal folds
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I
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C Output spectrum
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luuu 2.000 3.000

Frequency (hertz)

B Filter function
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E& Problem with Raw Spectrum

1 MMM)\M ﬂ"ﬂ | ””W“ MM 4

Figures from Ratree Wayland



}fm Deconvolution / Liftering
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Eﬁ Deconvolution / Liftering
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E& Deconvolution / Liftering
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E& Deconvolution / Liftering

abs(dft) and liftered

20
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CT e f NM
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log(s) = log(e) + log(f)

0 1000 2000 3000 freq/Hz

real cepstrum and lifter

200 :
o0 ’/Bn‘ch pulse
IDFT(log(s)) oot .
0 100 200 quefrency

Graphs from Dan Ellis



Eﬁ Mel Freq. Cepstral Coefficients

= Do FFT to get spectral information
= Like the spectrogram we saw earlier

=  Apply Mel scaling (New)

= Models human ear; more sensitivity
in lower freqs

=  Approx linear below 1kHz, log above,
equal samples above and below 1kHz

= Take Log
= Do discrete cosine transform

Mels scale

Frequency[Hz)

2400

2200

2000

1800

1600

1400

1200

1000

800

600

400

200

o[

v b b

0

1000

2000

3000

4000 5000

[Graph: Wikipedia]



p 3 Final Feature Vector

= 39 (real) features per 10 ms frame:
= 12 MFCC features
= 12 delta MFCC features
= 12 delta-delta MFCC features
= ] (log) frame energy
= ] delta (log) frame energy
= ] delta-delta (log frame energy)

= So each frame is represented by a 39D vector



Emission Model



E-f; HMMs for Continuous Observations

=  Before: discrete set of observations

4000

3500

= Now: feature vectors are real-valued

2500

= Solution 1: discretization

= Solution 2: continuous emissions
=  Gaussians
=  Multivariate Gaussians

20001

frequency of second formant/Hz

15001
=  Mixtures of multivariate Gaussians
oo Mo N R, et 0, KEY
= A state is progressively 1000} et e W e g e
. Y SR I o « bet
= Context independent subphone (~3 per b
phone) )
= Context dependent phone (triphones) YAl e
= State tying of CD phone s 260' ol Y N Bl

frequency of first formant/Hz




Vector Quantization

ldea: discretization

= Map MFCC vectors onto
discrete symbols

= Compute probabilities
just by counting

This is called vector
quantization or VQ

Not used for ASR any
more

But: useful to consider as
a starting point

Input Feature Vector I

Codebook of 256

NI 1
(T
(T 3

4

| [
(M
T
Compare to Codebook
T
(MM ~ ©F Pest Yector
(D

14wl | 44
Output index

frequency of second formant Hz

HEPTEILEk

"§=43




p 3 Gaussian Emissions

= VQis insufficient for top-
quality ASR
= Hard to cover high- 308.3

dimensional space with
codebook

= Moves ambiguity from the 608
model to the preprocessing

F, (Hz)

= |nstead: assume the
possible values of the
observation vectors are

normally distributed. 1210

: 3040 2188 1337 485.3
=  Represent the observation F, (Hz)

likelihood function as a
Gaussian?

909.6

From bartus.org/akustyk



Ef@ Gaussians for Acoustic Modeling

A Gaussian is parameterized by a mean and a variance:

P(x|p,0) = —/=exp (—(“72;‘5)2)

oV 2T

= P(x):

P(x) is highest here at mean

P(x) is low here, far from mean
P(x)




W Multivariate Gaussians

* |nstead of a single mean u and variance o2

P(z|p,0) = 0\/— eXp (_ (332_(,!;)2)

= Vector of means u and covariance matrix X

P(QZ‘[L, Z) — (QW)k/%|2|1/2 €XPp (—%(ZIZ o ﬂ)TZ_l(x o M))

= Usually assume diagonal covariance (!)
= Thisisn’t very true for FFT features, but is less bad for MFCC features



Gaussians: Size of X

u=1[0 0] i =[00]
= > = > = 0.6l > =2l
= As 2 becomes larger, Gaussian becomes more spread

out; as > becomes smaller, Gaussian more
compressed

Text and figures from Andrew Ng



E& Gaussians: Shape of 2

;

4 mf 4 =F

1 1 By 1 1 1 L 1 L1 By

1 1 1 1 1 1
= o [} 1 2 3 m m® o 0 1 2 3 o< =

1 0 L 0.5 I 0.8
Z_{O 1}’ Z_{O.E') 1}’ 'Z_{O.S 1}

= As we increase the off diagonal entries, more correlation between
value of x and value of y

Text and figures from Andrew Ng



¥

But we're not there yet

Single Gaussians may do a
bad job of modeling a
complex distribution in any
dimension

Even worse for diagonal
covariances

Solution: mixtures of
Gaussians

frequency of second formant/Hz

1500

g

500
0

| | |
400 600 800 1000 1200 1400
frequency of first formant/Hz

From openlearn.open.ac.uk




W Mixtures of Gaussians

= Mixtures of Gaussians:

P($|/,L7;, EZ) — (27r)k/21|§37;|1/2 CXp (—%(Q} o 'ui)—rz’i_l(x B 'uz))

P($|/L,Z,C) — Zz CzP(i’?‘MuZz)

(a) ' | (b)

— )

0 0.5 I 0 0.5 |

From robots.ox.ac.uk http://www.itee.uq.edu.au/~comp4702



GMMs

Summary: each state has an emission
distribution P(x|s) (likelihood function)
parameterized by:

= M mixture weights
= M mean vectors of dimensionality D

=  Either M covariance matrices of DxD or M
Dx1 diagonal variance vectors

Like soft vector quantization after all

= Think of the mixture means as being
learned codebook entries

= Think of the Gaussian densities as a
learned codebook distance function

= Think of the mixture of Gaussians like a
multinomial over codes

= (Even more true given shared Gaussian
inventories, cf next week)




State Model



W& State Transition Diagrams

= Bayes Net: HMM as a Graphical Model

:/_

chased




E& ASR Lexicon

@..’” @ '”.‘@ ORCACAORO
.8 n n
08 °‘ Word model for "on
Word model for "the"
20
.12 @
CROOZ0=0 D

Word model for "need" Word model for "I"

Figure: ] & M



W& Lexical State Structure

Word Model

Sequence
(spectral feature

Observation o m m
vectors) H

0, 0O 0; 04 O; 0

Figure: ] & M



Adding an LM

P(W, | W)
P(W, | w,)\
W]
P(W, [Wy)
P(W, W)
P(W, | W,)
W2
P(W,[W) ¢
[ J
e
P(W, | W,)

P(W, W)

\\P(WN | W)

Figure from Huang et al page 618



p 3 State Space

= State space must include
= Current word (|V| on order of 20K+)
= |ndex within current word (|L| on order of 5)
= E.g. (lec[t]ure) (though not in orthography!)

= Acoustic probabilities only depend on phone type
= E.g. P(x]|lec[t]ure) = P(x|t)

= From a state sequence, can read a word sequence



State Refinement



% Phones Aren’t Homogeneous

2000+

Frequency [Hz)

0.937203



W& Need to Use Subphones

Phone Model
b0)/ \bi0) 2(°3)/ n\:’z‘°" XY
Observation 4 *
Sequence
(spectral feature
vectors) H H H H H H

0, 0, O 0,

Figure: ] & M



E& A Word with Subphones




% Modeling phonetic context

* “NW»JH

' ............ | .........

miy

(AL

niy

3 WMNM

W)



“Need” with triphone models

«3-88-833-885-

#-n+iy n-iy+d iy—d+#

Figure: ] & M



g Lots of Triphones

= Possible triphones: 50x50x50=125,000

= How many triphone types actually occur?

= 20K word WSJ Task (from Bryan Pellom)

= Word internal models: need 14,300 triphones
= Cross word models: need 54,400 triphones

" Need to generalize models, tie triphones



W& State Tying / Clustering

[Young, Odell, Woodland
1994] Initial set of untied states

How do we decide which
triphones to cluster
together?

Use phonetic features (or
‘broad phonetic classes’)
= Stop

= Nasal

= Fricative

= Sibilant

= Vowel

= |ateral

R-Liquid?

Tie states 1n each leaf node

Figure: ] & M



p 3 State Space

= State space now includes

* Current word: |W| is order 20K

= |ndexin current word: |L| is order 5
= Subphone position: 3

= E.g. (lec[t-mid]ure)

= Acoustic model depends on clustered phone context
= But this doesn’t grow the state space

" But, adding the LM context for trigram+ does
= (after the, lec[t-mid]ure)

= Thisis a real problem for decoding



Decoding



Inference Tasks

Most likely word sequence:
d - ae - d

Most likely state sequence:
dl'd6_d6'd4_ae5'ae2'ae3_aeo_d2'd2'd3'd7_d5



Viterbi Decoding

z <3 - ERYY: 3

Gt(St, St—1) = P(x¢|s¢)P(5¢|5¢—1)

Vi(8¢) = Iglaii ¢t(3t, St—1)Vt—1 (St—1)
t—

Figure: Enrique Benimeli



p 3 Viterbi Decoding

Figure: Enrique Benimeli



p 3 Emission Caching

= Problem: scoring all the P(x|s) values is too slow
= |dea: many states share tied emission models, so cache them

10050

Word model for "on"

Word model for "the"

d2 2 @
oo T

Word model for "need" Word model for "I"



p 3 Prefix Trie Encodings

= Problem: many partial-word states are indistinguishable

= Solution: encode word production as a prefix trie (with
pushed weights)

= A specific instance of minimizing weighted FSAs [Mohri, 94]

Figure: Aubert, 02



Beam Search

¥

"= Problem: trellis is too big to compute v(s) vectors

* |dea: most states are terrible, keep v(s) only for top states at
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" |mportant: still dynamic programming; collapse equiv states
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p 3 LM Factoring

" Problem: Higher-order n-grams explode the state space

= (One) Solution:
= Factor state space into (word index, Im history)
= Score unigram prefix costs while inside a word
= Subtract unigram cost and add trigram cost once word is complete




E& LM Reweighting

= Noisy channel suggests
P(z|w)P(w)
= |n practice, want to boost LM
P(z|w)P(w)®
= Also, good to have a “word bonus” to offset LM costs
P(z|w)P(w)®|w|”

= These are both consequences of broken independence
assumptions in the model






Training



®£  Training Mixture Models

" |nput: wav files with unaligned transcriptions

" Forced alignment

= Computing the “Viterbi path” over the training data (where the
transcription is known) is called “forced alignment”

= We know which word string to assign to each observation sequence.
= We just don’t know the state sequence.

= So we constrain the path to go through the correct words (by using a
special example-specific language model)

= And otherwise run the Viterbi algorithm

= Result: aligned state sequence



EﬁState Tying

= Creating CD phones:
= Start with monophone, do EM
training
= Clone Gaussians into triphones

= Build decision tree and cluster
Gaussians

= Clone and train mixtures
(GMMs)

" General idea:

= |ntroduce complexity gradually

= |nterleave constraint with
flexibility
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E&Standard subphone/mixture HMM
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E& An Induced Model

Standard Model
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[Petrov, Pauls, and Klein, 07]



Ef; Hierarchical Split Training with EM
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E& Refinement of the /ih/-phone




Eﬁ Refinement of the /ih/-phone




Eﬁ Refinement of the /ih/-phone
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HMM states per phone
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